Part 1. Report Cover Report Number: W002 Title: Performance Oriented Packaging Testing of a PPP-B-601, Grade A, Type 2, Style A, Cleated-Plywood Box, Domestic, Banded, With Skids, 28 "x 20 "x 20 "containing 4-Liter Round Glass Bottles, (quantity of 6) for liquids, Packing Groups I, II, and III (Surface Modes) Responsible Individual: R. Craig Webb, Code 512 DSN 744-4142 Commercial (360)396-4142 Performing Activity: Naval Undersea Warfare Center Division, Keyport 610 Dowell Street Keyport, WA 98345-7610 Report Date: September 2003 Test Date: September 2003 Report Type: Final DTIC Distribution: N/A Requesting Organization: Defense Logistics Agency Defense Distribution Center ATTN: DDC- J-3/J-4-O 2001 Mission Drive New Cumberland, PA 17170-5000 Requesting Organization's Reference(s): DDC memo of 23 Dec 02, Subj: Performance Oriented Tests to be performed in 2003 #### Part 2. Data Sheet A. Exterior Shipping Container UN Type: Plywood Box UN Code: 4D Specification Number(s): PPP-B-601, Grade A, Type II, Style A, 28 " x 20"x 20 "Cleated Plywood Box, Domestic, Banded, With Skids, Container Supplier: NUWC Keyport Date of Manufacture: 4-03 Material: Wood (Plywood) Container Dimensions: 28 inches by 20 inches by 20 inches Closure (Type/Method): The outer plywood box is sealed using 8 penny cement coated sinkers. The box was then banded with 3/4 " flat steel strapping, two lengthwise and two girth-wise. Closure Spec. Numbers: ASTM-D 3953, Type 1, Regular duty, Finish A, Flat steel strapping NSN 8135-00-281-4069 Absorbent Material: Vermiculite, Fine Grain, Grace Zonolite Construction Products, NSN: 8135-01-324-2664 (Note: Additional testing was done with Absorbent GP. The cushioning effect was NOT as good as vermiculite and the packaging failed at the 2.7 m drop height.) B. Inner Packaging of Combination Packaging: Type: 4-liter, round, amber, glass bottle, with handle NSN: N/A Manufacturer/Distributor: HAZMATPAC Date of Manufacture: N/A Manufacturer's Number: N/A Capacity: 4-liter Dimensions: Diameter 6 inches, Height 13.25 inches Closure (Type/Method): Plastic Screw Cap, Diameter 1.5", Height 1.0" Secondary Closure 1" Wide Filament Reinforced Tape, Medium Tensile. (Type/Method): Class B Transparent, 7510-00-582-4772, ASTM- D5330, Type II applied one and half times minimum around the bottle and overlapping the cap C. Actual Product: Not Used D. Test Product: Used (water) UN Packaging Groups: I, II, and III Physical State: Liquid Amount per Container: 6 (72 lbs. total, 12 lbs. each) Test Weight: 185 lbs. (84 kg) Calculated Test Weight based on specific gravity (1.8) 247 lbs. (112kg) with increased drop height Density/Specific Gravity: 1.8 Drop Height: 106 in. (2.7 m) Stacking Weight/Force: 2000 lbs. (909 kg) # Additional Description: 1. Line the box with 4 Mil Polyethylene bag. Minimum size -51 inches wide by 55 inches high. Actual sized used -60 in. wide x 56 in. high. - 2. Place 3.5 inches of vermiculite or A-900 in the bottom of the box Place 6 bottles on the absorbent spaced evenly in the box. (2.5 inch separation from each other and sides of the box.) - 3. Surround the bottles with vermiculite or A-900 and cover to a depth of 3.5 inches, pack tightly, especially the A-900. - 4. Twist the bag and tape closed. (Closure IAW MIL-D-6054F). - 5. Seal the plywood box with cement coated sinkers or screws. - 6. Band the box with two lengthwise and two girth-wise bands. ### Part 3. Test Applicability: - A. Based on the drop height, computed stacking weight, and vibration testing, this test report is applicable for all surface modes of transportation including international and domestic (road, rail, and water) when the liquid hazardous substance intended for containment by the tested packaging is as described in this report. - B. Pass/fail conclusions were based on the particular plywood box specimens, test loads, and the limited quantities submitted for test. Extrapolation to other materials, other manufacturers, other applications, different inner packagings, container sizes, or lesser inner quantities is the responsibility of the packaging design agency or applicable higher headquarters. Extrapolation of test results based on less than the minimum recommended number of test specimens is also the responsibility of the packaging design agency or applicable higher headquarters. - C. Reference to specification materials has been made based either on the information provided by the requester, the manufacturer, or the markings printed on, attached to, or embossed on the packaging. - D. Testing was performed per Title 49 Code of Federal Regulations except as noted in this report. - E. Performance testing was undertaken and completed at the request of an agency responsible for the shipment of dangerous goods. The successful completion of required performance tests does not, by itself, authorize the marking and transportation of the dangerous goods. Applicable modal regulations should be consulted concerning the relationship of performance testing completed and the dangerous goods. - F. Required performance tests are intended to evaluate the performance of the packaging components. The criteria used to evaluate packaging performance is whether the contents of the packaging are retained within the outer packaging, should damage to the outer packaging occur, and secondly, if any inner packaging of hazardous materials leaks, ruptures, or is damaged so as to affect transportation safety. The successful completion of the required tests does not ensure the undamaged delivery or survivability of the actual commodity/item. - G. Before a configuration can be certified by the person(s) authorizing shipment, the appropriate packaging for the particular hazardous lading and mode of transportation must be determined, and the item(s) must be prepared for shipment per applicable regulations. The chosen configuration must have been performance tested in accordance with the size, the shape, and the weight constraints posed by the configuration to be certified. The testing reported herein should not be construed as blanket certification of any configuration that simply uses the performance tested package. Packaging paragraphs apply. ### Part 4. Tests Required: Packing Group I (greater danger) testing was requested for the above stated configuration. This configuration is intended to be applicable to a large assortment of liquid products in glass bottles contained in plywood boxes. These tests are designed to simulate the static loading, shock, and vibration a package (configuration) may encounter when being shipped worldwide by truck, rail, or ocean going transport. The order of testing was static loading, and vibration, followed by drop testing. ### A. Stacking Test: Three containers are required, one test per container. Compression by a top load is calculated to simulate a stack of height of 3 meters, maintained for 24 hours, followed by testing the container stability by placing two loaded containers on top of the tested container for at least 1 hour. #### B. Vibration Test: Three sample packagings must be filled and closed as for shipment. The samples must be placed on a vibrating platform designed to simulate actual vibrations encountered during transportation. The packages should be constrained horizontally to prevent them from falling off the platform, but must be left free to move vertically, and bounce and rotate. ### C. Drop Test: Five drops, requiring 5 sample containers. First drop (using the first sample), the package must strike the target flat on the bottom. Second drop (using the second sample), the package must strike the target flat on the top. Third drop (using third sample), flat on the long side. Fourth drop (using fourth sample), flat on the short side. Fifth drop (using the fifth sample) on a corner. The drop height shall be appropriated or the packaging group of the commodity. The container shall strike the target, which shall be a rigid, non-resilient, flat, horizontal surface. For other than flat drops, the center of gravity shall be vertically over the point of impact. # Part 5. Applicable Packing Group Test Requirements: #### A. Stacking Test: Apply the calculated static weight using a constant load evenly over the entire container. $$M = m (3000-h)$$ where: m = container's gross mass (as shipped) in kilograms h = container's height in millimeters M = constant load mass in kilograms or: $$W = \frac{w (118-h)}{h}$$ where: w = container's gross weight (as shipped) in pounds h = container's height in inches W = constant load weight in pounds Note: This test assumes similar weight containers stacked on top of the test sample. This may or may not be a valid assumption. This calculation also only provides a minimum weight. Consideration should be given to what will actually be experienced in the transportation cycle. #### D. Vibration: The test shall be performed for 1 hour at a frequency that causes the package to be raised from the vibrating platform to such a degree that a piece of material approximately 1/16 inch (0.2 cm) thick can be passed between the bottom of the package and the platform. The vibrating platform shall have a vertical double-amplitude (peak-to-peak) displacement of one-inch (2.54 cm). Test shall be performed in accordance to 49 CFR 173 Subpart B, Appendix C and 49 CFR 178. ## E. Drop Test: Solids and liquids, if the test is performed with the actual contents to be carried, or with another substance having essentially the same characteristics, or for liquids if the test is performed with water and the intended contents has a density of less than 1.2 g/cm³ (specific gravity less than 1.2) the drop height shall be: | Packing Group | Drop Height | |---------------|---------------------| | I | 1.8 m (70.9 inches) | | II | 1.2 m (47.2 inches) | | III | 0.8 m (31.5 inches) | Where the test sample doesn't contain the intended contents and its specific gravity is greater than 1.2, then obtain the required drop height in meters by calculating the following with product density (d): | Packing Group | Drop Height | |---------------|----------------------------------| | I | (d) x 1.5 m or (d x 59.1 inches) | | II | (d) x 1.0 m or (d x 39.4 inches) | | III | (d) x .67 m or (d x 26.4 inches) | Calculated drop height: $(1.8) \times 1.5 \text{ m} = 2.7 \text{ m} \text{ or } (1.8) \times 59.1 \text{ inches} = 106 \text{ inches}$ Round the drop height up to the first decimal. ### Part 6. Criteria for Passing Tests: ### A. Stacking Test: No test sample shall leak. Composite and combination containers shall not exhibit leakage of the filling substance from the inner receptacle or container. No test sample shall show any distortion liable to reduce its strength, cause stacking instability, or cause damage to internal container components likely to reduce transportation safety. The outer packaging must meet the stacking test requirements when empty in order to meet the variation 2 conditions. #### B. Vibration Test: Each packaging must be able to withstand the vibration test procedure without rupture or leakage. Immediately after testing each sample shall be turned on its side and observed for evidence of leakage. No test sample shall show any deterioration, which could adversely affect transportation safety, result in possible discharge of contents or reduce packaging strength. # C. Drop Test: There must be no damage to the outer packaging likely to adversely affect safety during transport, and there is no leakage of the filling substance from the inner packaging. #### Part 7. Test Results and Discussion: #### A. Stacking Test: PASS Three empty boxes were stacked with 2000 lbs. and maintained in that condition for a period of 24 hours with no visible damage or adverse effects. Three other boxes were then packed as described in Part 2 and again stacked with 2000 lbs. for a period of 24 hours with no visible damage or adverse effects. #### B. Vibration Test: PASS The three boxes packed as described above were subjected to the vibration test. Each was tested on a vibration table, which was set a 1-inch vertical double amplitude (peak-to-peak) displacement, at a frequency such that the fiberboard box was raised from the platform. The distance was measured using a 1/16-inch feeler gage. The frequency was set such that the feeler gage could be passed between the bottom of the package and the table surface. There was no damage or adverse effects in evidence to the fiberboard box or its contents. # C. Drop Test: PASS Five boxes, were used from both the stack and vibration tests, and were dropped 106 inches (2.7 m) onto a 2-inch thick steel impact plate. These boxes were subjected to one drop each as follows; flat on the bottom, flat on the top, flat onto the long side, flat on the short side, and finally on a corner. The damage sustained to the test loads was not sufficient to cause leakage of the filling substance from the inner packaging. All packaged material was retained within the confines of the plywood box. #### Part 8. References: - A. Title 49 Code of Federal Regulations - B. International Air Transportation Association Dangerous Goods Regulations - C. ASTM D 4919, Specification for Testing of Hazardous Materials Packagings - D. ASTM D 999, Standard Method for Vibration Testing of Shipping Containers - E. DLAD 4145.41/AR 700-143/AFJI 24-201/NAVSUPINST 4030.55A/MCO 4030.40A, Packaging of Hazardous Materials - F. ISO 535/TAPPI T 441/ASTM 3285 Determination of Water absorption of Paper and Board (Cobb Method) #### Part 9. Distribution List: Commander DDC- J-3/J-4-O Attn: "POP TEAM" 2001 Mission Drive New Cumberland PA 17017